Population genetics of complex life-cycle parasites: an illustration with trematodes.
نویسندگان
چکیده
Accurate inferences on population genetics data require a sound underlying theoretical null model. Organisms alternating sexual and asexual reproduction during their life-cycle have been largely neglected in theoretical population genetic models, thus limiting the biological interpretation of population genetics parameters measured in natural populations. In this article, we derive the expectations of those parameters for the life-cycle of monoecious trematodes, a group comprising several important human and livestock parasites that obligatorily alternate sexual and asexual reproduction during their life-cycle. We model how migration rates between hosts, sexual and asexual mutation rates, adult selfing rate and the variance in reproductive success of parasites during the clonal phase affect the amount of neutral genetic diversity of the parasite (effective population size) and its apportionment within and between definitive hosts (using F-statistics). We demonstrate, in particular, that variance in reproductive success of clones, a parameter that has been completely overlooked in previous population genetics models, is very important in shaping the distribution of the genetic variability both within and among definitive hosts. Within definitive hosts, the parameter F(IS) (a measure of the deviation from random mating) is decreased by high variance in clonal reproductive success of larvae but increased by high adult self-fertilisation rates. Both clonal multiplication and selfing have similar effects on between-host genetic differentiation (F(ST)). Migration occurring before and after asexual reproduction can have different effects on the patterns of F(IS), depending on values of the other parameters such as the mutation rate. While the model applies to any hermaphroditic organism alternating sexual and clonal reproduction (e.g. many plants), the results are specifically discussed in the light of the limited population genetic data on monoecious trematodes available to date and their previous interpretation. We hope that our model will encourage more empirical population genetics studies on monoecious trematodes and other organisms with similar life-cycles.
منابع مشابه
Life cycles shape parasite evolution: comparative population genetics of salmon trematodes.
Little is known about what controls effective sizes and migration rates among parasite populations. Such data are important given the medical, veterinary, and economic (e.g., fisheries) impacts of many parasites. The autogenic-allogenic hypothesis, which describes ecological patterns of parasite distribution, provided the foundation on which we studied the effects of life cycles on the distribu...
متن کاملThe ups and downs of life: population expansion and bottlenecks of helminth parasites through their complex life cycle.
The fundamental assumption underpinning the evolution of numerous adaptations shown by parasites with complex life cycles is that huge losses are incurred by infective stages during certain transmission steps. However, the magnitude of transmission losses or changes in the standing crop of parasites passing from upstream (source) to downstream (target) hosts have never been quantified in nature...
متن کاملTrematode life cycles: short is sweet?
Complex life cycles are a hallmark of parasitic trematodes. In several trematode taxa, however, the life cycle is truncated: fewer hosts are used than in a typical three-host cycle, with fewer transmission events. Eliminating one host from the life cycle can be achieved in at least three different ways. Some trematodes show even more extreme forms of life cycle abbreviations, using only a mollu...
متن کاملLife cycle abbreviation in the trematode Coitocaecum parvum: can parasites adjust to variable conditions?
The complex life cycles of parasites are thought to have evolved from simple one-host cycles by incorporating new hosts. Nevertheless, complex developmental routes present parasites with a sequence of highly unlikely transmission events in order to complete their life cycles. Some trematodes like Coitocaecum parvum use facultative life cycle abbreviation to counter the odds of trophic transmiss...
متن کاملF-statistics under alternation of sexual and asexual reproduction: a model and data from schistosomes (platyhelminth parasites).
Accurate inferences on population genetics data require a sound underlying theoretical null model. Nearly nothing is known about the gene dynamics of organisms with complex life cycles precluding any biological interpretation of population genetics parameters. In this article, we used an infinite island model to derive the expectations of those parameters for the life cycle of a dioecious organ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal for parasitology
دوره 35 3 شماره
صفحات -
تاریخ انتشار 2005